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Why do we need uncertainty quantification?

 Machine learning provides description of training data.
— Based only on input data with little expert knowledge.
— Often opaque, based on subtle correlations.
— Generalizes to similar data, but what is similar is not clear.
» Data is currently
— Unimodal.
— Collected opportunistically.
— Has little gold-standard ground truth.
* To reduce human workload,
— Need confidence in individual predictions: triage the highly certain cases.
— Understand both statistical errors and data biases.
— Quantify model transfer uncertainty.

UQ allows division of work between machines and humans
|
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Generalization Error

* No amount of examples can predict an unseen point without assumptions.
» Function space is huge
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* Need to restrict to or favor parts of function space.
* Increase in data allows more complicated models without over-fitting.

There is an unavoidable tradeoff between ability to fit and prediction

Los Alamos National Laboratory 10/25/2017 | 3



Example: Checking if data has signal

« Are we predicting better than random?
— Even random data can be predicted, based only on frequencies
— Remove all signal that one is interested in by permutation
— Measure estimated error on this random data using the same methodology
— Allows us to measure whether prediction is based on expected signal
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There is a prediction floor one reaches at low sample sizes
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Example (continued): Empirical error curves

* In simple machine learning "
techniques, error for large
1 r m=9 .89 n 08 +0.
amount of data typically falls 1 E(n)=0.89 1% +029

off as a power law.

0.9

 One can measure this error |
for different sample sizes. Sos| \
» This curve can be ]
extrapolated to estimate the o7r .
oracle error: the amount of ! \\
error that is intrinsic to the *er :
method.

n

For simple machine learning, there is an error floor at large sample sizes
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Example (continued): Model complexity

« In standard machine | | -
learning, one can control _| / \\ |
. . /’ \ 150 \\\
model complexity by doin,| / \ [ / \
a variable selection. \ | |
- As more variables L S
included, fitting better, so /A N S S

train set error reduces.
- Test set error stabilizes I

« As model complexity
Increases

— Each training set is fit better ~ ﬁ

— Different training sets give
different models

Bias variance tradeoff as model complexity increases.
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Rademacher Error

Ideal situation
— Model predicts real data well
— Model does not predict random data at all

Then, one can be sure that the prediction is real, and will generalize.
Formalized in Rademacher bounds: strictly conservative upper bound.
Bound becomes tight as data size increases
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Example: Autoencoder or Principal Components

« Compare
— Principal Components
— Random Components
— Autoencoder Components
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Principal Components and Autoencoders give similar Rademacher bound
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Rademacher to bound deep learning?

» Traditionally, one gets strong uncertainty guarantees using these

« Shown to not work for deep learning
— First memorize (really bad and unlearnable solution)
— Optimize to find a better solution

« What counts as better? %

- Function space dimension exponentially large.
* Unreasonable effectiveness of learning IGUSs.
* Theory allows metalearning across domains:
KLy model transfer uncertainty.

O « UQ from correlations between generative and
analytical models.

Work in progress to use other methods like dropout sensitivity

Los Alamos National Laboratory 10/25/2017 | 9



Uncertainty stratification and Triage

 Measuring average uncertainty only a first step

* |If we can separate certain and uncertain situations
— Can spend expensive resources on uncertain situations
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UQ can be used to distill error-free output
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UQ on individual instances

 No assumption-free generalization guarantees

« Assume close by train cases inform uncertainty
« Assumptions dictate what is close by.

— Close by in input space: Similar word use, similar format, ...

— Close by in output space: Difficulty making a call, boundary of match region, ...
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Example: use highest score
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Conclusions

« Uncertainty quantification bounds errors on cases unseen
— Standard approaches available
— Need modification for deep learning
« Uncertainty quantification allows optimal design of experiments
— Simulations can address lacunae in knowledge
— Effects of sampling biases can be quantified
» Uncertainty quantification can allow certainty distillation
— Can provide a subset with negligible errors
— Separate the easy cases from the hard cases

UQ methods in development here will help other deep-learning projects
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